CS109 Summary Chris Piech CS109, Stanford University

FORD JUNION

189

Counting Rules

What is a Probability?

$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$

Sources of Probability

1. Experimentation

2. Dataset

3. Analytic Solution

4. Expert Opinion

Third Class with Coding!

Target Revisited

Piech, CS106A, Stanford University

 ≈ 0.1963

Sending Bit Strings

- Bit string with m 0's and n 1's sent on network
 - All distinct arrangements of bits equally likely
 - E = first bit received is a 1
 - F = k of first r bits received are 1's

P(E|F)?

*Think of the bits as distinct so that all outcomes are equally likely

Everything in the world is either

a potato

or not a potato.

$P(X) + P(X^C) = 1$

WHEN YOU MEET YOUR BEST FRIEND

Somewhere you didn't expect to.

Trailing the dovetail shuffle to it's lair - Persi Diaconosis

Netflix and Learn

What is the probability that a user will watch Life is Beautiful?

P(E)

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n} \approx \frac{\# \text{people who watched movie}}{\# \text{people on Netflix}}$$

P(E) = 10,234,231 / 50,923,123 = 0.20

Let's Make a Deal

Game show with 3 doors: A, B, and C

- Behind one door is prize (equally likely to be any door)
- Behind other two doors is nothing
- We choose a door
- Then host opens 1 of other 2 doors, revealing nothing
- · We are given option to change to other door
- Should we?
 - Note: If we don't switch, P(win) = 1/3 (random)

Second Ever Sections

Second Ever Sections

Zika Test

Positive Zika. What is the probability of zika?

- 0.1% of people have zika
- 90% positive rate for people with zika
- 7% positive rate for people without zika

The right answer is 1%

Bayes Theorem Intuition

Update Belief

Before Observation

Recall our Ebola Bats

Discovered Pattern

Piech, CS106A, Stanford University

These genes

don't impact T

G

 G_3

Random Variables

For example Y is the number of heads in 5 coin flips

Fundamental Properties

Expectation

Big deal lemma: first stated without proof

E[X + Y] = E[X] + E[Y]Generalized: $E\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} E[X_{i}]$

Holds regardless of dependency between X's

St Petersburg

Game set-up

- We have a fair coin (come up "heads" with p = 0.5)
- Let n = number of coin flips ("heads") before first "tails"
- You win \$2ⁿ

How much would you pay to play?

X is the score a peer grader gives to an assignment submission

Binomial

Poisson

Geometric

Storing Data on DNA

All the movies, images, emails and other digital data from more than 600 smartphones (10,000 gigabytes) can be stored in the faint pink smear of DNA at the end of this test tube.

ILL. No. 65. MEMORIAL ARCH, WITH CHURCH IN BACKGROUND, STANFORD UNIVERSITY, SHOWING TYPES OF CARVED WO WITH THE SANDSTONE.

Bit Coin Mining

You "mine a bitcoin" if, for given data D, you find a number N such that Hash(D, N) produces a string that starts with g zeroes.

Representative Juries

Simulation:

Dating at Stanford

Each person you date has a 0.2 probability of being someone you spend your life with. What is the average number of people one will date? What is the standard deviation?

Bloom Filter

random()?

Riding the Marguerite

You are running to the bus stop. You don't know exactly when the bus arrives. You arrive at 2:20pm.

What is P(wait < 5 min)?

Integrals

*loving, not scary

What do you get if you integrate over a probability *density* function?

A probability!

Climate Sensitivity

Probability Density Function

Simplicity is Humble

* A Gaussian maximizes entropy for a given mean and variance

PDF and CDF of a Normal

A CDF is the integral from –infinity to x of the PDF

Altruism?

Scores for a standardized test that students in Poland are required to pass before moving on in school

See if you can guess the minimum score to pass the test.

- 3.5% 3.0% 2,5% 2.0% 1.5% 1.0% 0.5% 0.0% 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70
- 2.1. Poziom podstawowy

http://freakonomics.com/2011/07/07/another-case-of-teacher-cheating-or-is-it-just-altruism/comment-page-2/

Will the Warriors Win?

What is the probability that the Warriors beat the Blazers? How do you model zero sum games?

OLDEN STA

ELO Ratings

How it works:

- Each team has an "ELO" score S, calculated based on their past performance.
- Each game, the team has ability A ~ N(S, 200²)
- The team with the higher sampled ability wins.

Arpad Elo

Joint Distributions

Joint Distributions

Go to this URL: https://goo.gl/Jh3Eu4

Joint Probability Table

	Walk	Bike	Scooter	Drive	Marginal Year
Freshman	0.04	0.04	0.01	0.03	0.12
Sophomore	0.03	0.34	0.03	0.00	0.40
Junior	0.04	0.21	0.01	0.00	0.25
Senior	0.07	0.08	0.01	0.00	0.16
5+	0.04	0.07	0.00	0.02	0.12
Marginal Mode	0.21	0.73	0.06	0.05	

Joint Dart Distribution

Joint Dart Distribution

Dart x location

Multinomial

Example document:

"Pay for Viagra with a credit-card. Viagra is great. So are credit-cards. Risk free Viagra. Click for free." n = 18

Midterm (part 1)

Midterm (part 2)

Midterm (part 3)

Midterm Score Bucket (m)

Biometric Keystroke

Enchanted Die

Assignment Grades

We have 2055 assignment distributions from grade scope

Mystery: Why is Binomial Normal?

Mystery: Why is the sum of IID uniforms normal?

Mystery: Why is the mean of IID vars normal?

C.L.T. Explains This

Piech, CS106A, Stanford University

C.L.T. Explains This

Piech, CS106A, Stanford University

C.L.T. Explains This

Problem set 5: What is the sum of IID uniforms?

Piech, CS106A, Stanford University

•

Machine Learning Example

- You want to know the true mean and variance of happiness in Buthan
 - But you can't ask everyone.
 - Randomly sample 200 people.
 - Your data looks like this:

Happiness = {72, 85, 79, 91, 68, ..., 71}

 The mean of all of those numbers is 83. Is that the true average happiness of Bhutanese people?

Population

Sample

Sample

Collect one (or more) numbers from each person

Universal Sample

Piech, CS106A, Stanford University

Peer Grading

Peer Grading on Coursera HCI.

31,067 peer grades for 3,607 students.

A/B Testing

Piech, CS106A, Stanford University

General "Inference"

tom Checker BETA

umo	ore symp	toms			AG	AE 30	GENDER Male	
Type your main symptom here						MY SYMPTOMS cough × throat irritation ×		
					sneez	ing ×		
hoose	common syr	nptoms						
hoose	common syn	diarrhea	dizziness	fatigue				
hoose loating ver	common syn cough headache	nptoms diarrhea muscle cran	dizziness np nause	fatigue				

Continue

12)

Lots of Random Vars?

Bayes Nets!

	Alg #1: J	oi	nt	S	ar	npling
			N. werey	100.00		webMd — -bash — 38×22
		[0,	0,	0,	0]	
		[0,	1,	0,	1]	
	ES = 100000	Γ1.	0.	1.	01	
		[1	1	1	11	Each one of these is
			1		11	one posterior sample:
5	" Joint Sa	10,	1,	0,	1 L L	ene perior estupie.
e	Here and the second	10,	1,	0,	01	
0	#	10,	0,	0,	0]	
7	# we can answer any	[0,	1,	1,	1]	5
à	# unith multium sints	[0,	1,	0,	0]	
8	# with multivariate	[0,	1,	0,	1]	
9	# where conditioned	[0]	1.	0.	01	
10	def and a ().	10	1	a	11	[Elu Harad Eaver Tired]
TO	der main():	10,	1	0	11	[i la, ogida, i ever, i i ea]
11	obs = getObserv	10,	1,	0,	101	
10		10,	0,	0,	10	
17	print Observat	11,	1,	1,	1]	
13		10,	0,	0,	0]	
14		[0,	0,	0,	0]	
14	samples = sampl	[1,	1,	1,	1]	
15	prob = probEluG	[0,	1,	0,	0]	
10		Obse	erva	atio	on =	[None, None, None, 1]
10	print Pr(Flu)	Pr	Flu	1 (Obs)	= 0.140635888502
4.77			10		0007	012100000002
		-				

Alg #2: MCMC

MCMC is a way to sample with conditioned variables fixed

Each one of these is one joint sample:

[Flu, Undergrad, Fever, Tired]

Towards Machine Learning

MLE: Likelihood of Data

Likelihood of Data from a Normal

Gumbel Fit

MAP: Most Probable Parameter

Machine Learning

Heart

Netflix

NETFLIX

Logistic Regression

Piech, CS106A, Stanford University

By the numbers

~600 Fruit

~ 30 Major Keys

Naïve Bayes Assumption: $P(\mathbf{x}|y) = \prod_{i} P(x_i|y)$

1 Contest

Thomas Bayes

 Rev. Thomas Bayes (1702 –1761) was a British mathematician and Presbyterian minister

- He looked remarkably similar to Charlie Sheen
 - But that's not important right now...

Jacob Bernoulli

 Jacob Bernoulli (1654-1705), also known as "James", was a Swiss mathematician

- One of many mathematicians in Bernoulli family
- The Bernoulli Random Variable is named for him
- He is my academic great¹²-grandfather
- Same eyes as Ice Cube

Simeon-Denis Poisson

 Simeon-Denis Poisson (1781-1840) was a prolific French mathematician

- Published his first paper at 18, became professor at 21, and published over 300 papers in his life
 - He reportedly said "Life is good for only two things, discovering mathematics and teaching mathematics."
- I'm going with French Martin Freeman

Carl Friedrich Gauss

 Carl Friedrich Gauss (1777-1855) was a remarkably influential German mathematician

- Started doing groundbreaking math as teenager
 - Did not invent Normal distribution, but popularized it
- He looked like Martin Sheen
 - · Who is, of course, Charlie Sheen's father

Proximal Concepts

Bounds: Markov's Inequality

• Say X is a **non-negative** random variable

$$P(X \ge a) \le \frac{E[X]}{a}$$
, for all $a > 0$

 \widehat{x}

f(X)

 \mathcal{X}

- Proof:
 - I = 1 if $X \ge a$, 0 otherwise
 - Since $X \ge 0$, $I \le \frac{X}{a}$
 - Taking expectations:

$$E[I] = P(X \ge a) \le E\left[\frac{X}{a}\right] = \frac{E[X]}{a}$$

Markov and the Midterm

- Statistics from CS109 midterm
 - X = midterm score
 - Using sample mean $\overline{X} = 102.0 \approx E[X]$
 - What is $P(X \ge 110)$?

$$P(X \ge 110) \le \frac{E[X]}{110} = \frac{102}{110} = 0.93$$

- Markov bound: $\leq 93\%$ of class scored 110 or greater
- In fact, 15.1% of class scored 110 or greater
 - Markov inequality can be a very loose bound
 - o But, it made <u>no</u> assumption at all about form of distribution!

Learn Bayes Nets Params?

* That is what we did with Naïve Bayes

Learn Bayes Nets Structure?

* That is what we did with Ebola Bats!

Missing Data?

Missing Not at Random: You collect data on whether or not people intend to vote for Ayesha, a candidate in an upcoming election. You send an electronic poll to 100 randomly chosen people. You assume all 100 responses are IID.

User Response	Count
Responded that they will vote for Ayesha	40
Responded that they will not vote for Ayesha	45
Did not respond	15

* Scratched the surface in section
Temporal Patterns?

* Special type of Bayesian Network called a Markov Network

Ethics and Al

Ethics and Datasets?

Sometimes machine learning feels universally unbiased.

We can even call some estimators "unbiased"

Google/Nikon/HP had biased datasets

https://www.google.com/ingresTingurl=http%3A%2P%2Fww...

JANSPERSON,

Much more to Ethics + Al

Open Problems

One Shot Learning

Single training example:

Test set:

とうりていていていていた。

Bayesian Program Learning

Lake et al. Human-level concept learning through probabilistic program induction

Bayesian Program Learning

Lake et al. Human-level concept learning through probabilistic program induction

Transfer Learning

Neural Network Structure?

Neural Turing Machines

Neural Turing Machine (NTM)

Theoretical Deep Learning

Sampling + Deep Learning!

Natural Language

Al for Medicine

Esteva, Andre, et al. "Dermatologist-level classification of skin cancer with deep neural networks." *Nature* 542.7639 (2017): 115-118.

Climate Change?

Climate Change?

Honorable Mentions Differential Privacy Fairness and AI General AI **Better Optimization** DeepLearning + X Self Driving Cars **Understanding Video**

After CS109

Theory

CS161 – Algorithmic analysis

Stats 217- Stochastic Processes

CS 238 - Decision Making Under Uncertainty

CS 228 – Probabilistic Graphical Models

AI

CS 221 - Intro to AI

CS 229 - Macine Learning

CS 230 - Deep Learning

CS 224N - Natural Language Processing

CS 234 - Reinforcement Learning

Applications

CS 279 – Bio Computation Literally any class with numbers in it

Technology magnifies. What do we want magnified?

Why Study Probability + CS?

Interdisciplinary

Closest Thing To Magic

Now is the Time

Oh and Its Useful

Code.org

Everyone is Welcome

I guarantee the techniques will change...

You are close to the edge of human knowledge

(all of you)

thank you!

The End